Patterns and Changes in the Emergent Vegetation of the Rincon Bayou Delta, 2005-2016

TWDB Project Goal:

To characterize changes in landscape vegetation patterns in the Nueces River Delta, Texas utilizing remote sensing and geospatial analysis

Introduction

- Rapid erosion is taking place along the Nueces Delta Shoreline
- The erosion has caused breaching and allowed intrusion of Nueces Bay waters into brackish water ponds, further exacerbating wetland loss

Photo courtesy of Kim Jackson

Objectives

The major objective of the overall project, funded by TWDB, is to

- (1) Identify changes in the vegetative areal extent of the Nueces Delta through analysis of new imagery with historical (2005) imagery, and
- (2) Determine extent and rate of shoreline loss.

CBBEP has funded the acquisition of high-resolution digital camera imagery of the same quality as employed in 2005. Thank you Ray Allen!!!!!!

1997

2005

CIR Orthoganal Imagery

Digital Mapping Camera (Z/I Intergraph DMC)

- Simultaneously acquires True-Color, Infrared, and Black and White Imagery.
- Pixel resolution of 1 foot ground sample distance
- Stereoscopic (60% forward overlap, 30% sidelap)
 coverage no greater than 10,000 foot AGL
- Imagery is orthorectified
- Camera equipped with airborne GPS and inertial measurement unit

Ground Data Sampling Design

- Clustered sampling approach
- 32 random points
- 16 random
 sampling locations
 within 200 meters
 of clusters will yield
 512 sampling
 locations

Mapped Vegetation Categories

- Other non-woody
- B. frutescens and S. virginica
- Non-vegetated
- S. spartinae
- Water
- Other woody vegetation
- Sand

Shoreline Erosion: Image Rectification

- 12 ground control points
- Images matched using polynomial algorithm in image processing software.

Results (1997-2005)

- The average shoreline retreat was 20.15 m or about 2.5 m/year
- There was an estimated 215,572.5 m² (53.3 acres) of marsh in 1997 and 174611.2 m² (43.15 acres) in 2005, a net loss of 10.15 acres.
- The rate of shoreline area loss in the study area is roughly 1.27 acres per year.

EXTRA SLIDES

Creation of Shoreline GIS Layers

- Baseline drawn parallel to shoreline.
- 200 meter buffer on each side to bound the area of analysis.

Creation of Shoreline GIS Layers

- Shoreline manually digitized onscreen for each image.
- Difference in shoreline area calculated in the GIS

Estimation of Shoreline Retreat

Data

Two different sources of imagery

1997

- Traditional color infrared image.
- Color transparency was scanned to make it digital
- No spatial information

2005

- Acquired using digital mapping camera.
- Rectified using onboard GPS
- Color infrared

1997

2005

